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Abstract— An approach is described for retrieving surface 
soil moisture and freeze/thaw state using 3-km resolution 
L-band radar data of the planned Soil Moisture Active 
and Passive (SMAP) mission. SMAP radar backscatter 
coefficients are simulated using radar scattering models 
and land surface hydrology model output generated over 
the contiguous United States (CONUS). A Monte-Carlo 
simulation is performed to assess the error budget of the 
soil moisture retrievals in the presence of radar 
measurement error and error in surface roughness. The 
estimated soil moisture retrieval accuracy is better than 
0.06 cm3/cm3 for vegetation water content less than 1.2 
kg/m2 and soil moisture in the range of 0 to 0.3 cm3/cm3. 
The retrieval performance improves if radar speckle is 
reduced by additional observations (e.g., including both 
fore- and aft-scan data). It is currently assumed that the 
surface roughness is known with 10% error, but a time-
series method is under development to estimate the 
roughness. The surface freeze/thaw state retrieval is 
simulated using a surface hydrology process model forced 
with climatology. The simulation illustrates a SMAP daily 
composite freeze/thaw product derived using a time-series 
algorithm applied to the SMAP high-resolution radar 
data. 

I. INTRODUCTION 
The Soil Moisture Active and Passive (SMAP) mission, 
scheduled for launch in 2014, will offer simultaneous 
measurements with a synthetic aperture radar (SAR) and a 
radiometer operating at 1.26 and 1.41 GHz (L-band) 
respectively. SMAP will provide global land surface 
measurements of soil moisture and freeze/thaw state. The soil 
moisture measurements will be used to enhance understanding 
of processes that link the water and energy cycles and their 
applications. The freeze/thaw measurements are aimed at 
quantifying net carbon flux in boreal landscapes. These data 
will help extend the capabilities of weather and climate 
prediction, flood forecasts, drought monitoring, and 
agricultural prediction. 

The SMAP L-band radar measures HH, HV, and VV 
polarized backscatter (σ0). The offset parabolic mesh reflector 

antenna scans conically about the nadir axis such that there is 
a fixed 40-degree earth-incidence angle across the 1000-km 
swath.  At the edge of the swath, the radar samples have a 
single-look spatial resolution of 250 m in range and 400 m in 
azimuth after SAR processing. The azimuth resolution 
degrades towards the center of the swath.  The σ0 values are 
averaged (multi-looked) and posted at a 1 km grid spacing. 
The spatial resolution of the 1-km posted data ranges from 1 
km to 3 km over the outer ~70% of the swath.  The relative 
accuracy of the co-pol channels is designed to be less than 0.9 
dB, which consists of speckle noise and other errors including 
calibration and radio frequency interference. The orbit is 
polar, sun-synchronous, with 680-km altitude and 8-day exact 
repeat.  The wide swath provides global coverage on average 
every 3 days or less at the equator and every 2 days or less in 
the boreal regions poleward of 45°. 

This paper describes forward simulations of SMAP radar 
observations and retrieval simulations of soil moisture and 
freeze/thaw state. The forward simulation is implemented on 
the SMAP Science Data System (SDS) Testbed over the 
contiguous U. S. (CONUS) domain.  Future tests will be 
conducted over more extensive domains. 

II. SOIL MOISTURE RETRIEVAL 
SMAP plans to provide a 10-km resolution soil moisture 
product for hydrometeorology applications using an optimal 
algorithm combining the SMAP radar (3-km resolution) and 
radiometer (40-km resolution) observations.  The desired 
accuracy of the 10-km soil moisture product is 0.04 cm3/cm3, 
which provides five or more levels of moisture discrimination 
between dry and saturated soil and allows estimation of 
surface fluxes to within the in situ observation error [1]. The 
accuracy target is relaxed to 0.06 cm3/cm3 for the radar-only 
retrieval at 3-km resolution, considering the challenge of radar 
soil moisture retrieval in the presence of roughness and 
vegetation. In this section, the feasibility of achieving the 
radar-only soil moisture retrieval accuracy is examined 
through the simulation of radar forward scattering and 
retrieval. 



Proceedings of IEEE International Radar Conference, Washington DC, May 2010. doi: 10.1109/RADAR.2010.5494523 

 

A. Forward scattering model  
Two models for radar forward scattering are described here to 
simulate σ0. In general, the total σ0 (σ 0

total ) consists of a bare 
surface component (σ 0

s ), a volume scattering component from 
the vegetation canopy (σ 0

v ), and interaction between bare 
surface and volume (σ 0

sv ): 

σ 0
total = σ 0

s exp(−2τ cosθ) +σ 0
v +σ 0

sv ,  (1) 

where τ is the vegetation opacity and θ is the local incidence 
angle. A simplified empirical model has been considered that 
incorporates the bare surface models of Dubois et al. [2] for  
co-pol and Oh et al. [3] for cross-pol, and the vegetation cloud 
model of Ulaby et al. ([4], Ch. 21.5) for the volume and 
interaction components. Hereafter this model will be referred 
to as the DOU model. The relationship between soil moisture 
and permittivity is defined by the dielectric model of Dobson 
et al. [5]. A second model considered uses the small 
perturbation model (SPM) for a bare surface ([6], Ch. 2) and a 
discrete scattering model (DSM) for vegetation scattering [7]. 
The dielectric model used in this case is from Hallikainen et 
al. [8]. This model will be referred to as the SPM/DSM. DSM 
computes scattering from individual scatterers using the 
infinite cylinder approximation, and double-bounce using the 
Kirchoff surface method. DSM is configured for a grass 
surface only at present. 

 

 
Figure 1. Simulated σ0HH in dB for a composite of six 
simulated SMAP descending (AM) orbits using geophysical 
model data for June 2004. 

 
B. Forward simulation with land surface model output data 
Our present simulation covers the contiguous U. S. domain 
where there is ready availability of high-resolution (1 km) land 
surface model simulation data. The simulation is based on the 
DOU empirical radar backscatter model. Later, as more 
sophisticated models for different land surface classes become 
available those will be used. For the forward simulation, 
moisture and temperature fields were generated by the Noah 
land surface model [9] by Kumar et al. [10] at 1 km resolution 
and 6-hourly. Vegetation water content (VWC) was derived 
from MODIS NDVI data using a simple empirical 
relationship. Static fields of surface characteristics were 

derived from a MODIS based land surface classification,  and 
surface texture data were obtained from the U. S. General Soil 
Map (STATSGO) at 1 km resolution.  

An example of σ0 is shown in Figure 1 for the HH channel. 
Gaussian random noise with a magnitude of 0.9 dB (1-sigma) 
is multiplied to represent effective Kp noise that includes 
speckle (0.7 dB), relative calibration error (0.35 dB), and 
contamination from radio frequency interference (0.4 dB). 
This noise level was applied uniformly across all three 
polarimetric channels in an uncorrelated manner and 
represents a worst case (actual error is expected to be less than 
0.9 dB). The backscatter σ0 is large in the Pacific Northwest 
and Eastern U. S. where the denser vegetation significantly 
influences the scattering.  

C. Soil moisture retrieval 
The DOU model has deficiencies in representing the cross-pol 
vegetation volume scattering. Therefore, the retrieval 
simulation is studied instead using the SPM/DSM. The same 
radar model is used here for both the forward and retrieval 
processes. This allows study of the impacts of instrument and 
aggregation errors alone. As a parallel activity, the quality of 
the radar forward model will be examined by comparing with 
observational data and by model inter-comparisons. In the 
retrieval simulation the soil moisture (Mvrtr) and vegetation 
water content (VWCrtr) values are retrieved so as to minimize 
the distance (d) that is defined as: 

, (2) 

where σ0,fwd are the SMAP “observations” (forward-simulated 
backscatter). The estimated backscatter, σ0,rtr, is evaluated 
using Mvrtr, VWCrtr, and the ancillary fields. The weight, w, is 
currently set to 1 for all three input channels. During the 
minimization, dB units are used for σ0, noting that σ0 in dB 
has a near-linear relationship with permittivity and in turn with 
soil moisture (at least over the lower soil moisture range). The 
3-channel inputs (HH, VV, and HV) determine two unknowns 
(Mv and VWC). The two unknown parameters are chosen for 
the retrieval since this choice resulted in better Mv retrieval 
performance than other choices. Surface roughness is assumed 
known within some assigned uncertainty. 
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Figure 2. Monte-Carlo simulation of soil moisture retrieval 
error for VWC up to 3 kg/m2, performed using the SPM/DSM 
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model. The purple color includes errors greater than 0.1 
cm3/cm3. 

 
For the first part of the study, a Monte-Carlo simulation was 
performed to understand the behavior of the soil moisture 
retrieval using Eq. 2. Soil moisture is varied from 0 to 0.5 
cm3/cm3 with increments of 0.1. VWC is varied from 0 to 5 
kg/m2 in increments of 0.5. The surface roughness value is set 
to 0.3 in terms of ks (k is the wave number and s is the rms 
height). The result is interpolated onto a finer grid for moisture 
and VWC to generate Figure 2. Two random variables in the 
simulation are the Kp noise of 0.9 dB (that is, multiplicative 
noise of 22% magnitude) and a 5% uncertainty in the 
knowledge of surface roughness.  For a bare surface (VWC = 
0), the retrieval error ranges from 0.02 to 0.06 over the 
moisture range of 0 to 0.3. This result is consistent with that of 
Dubois et al. [2], although direct comparison is difficult due to 
differences in the retrieval approaches. In general the retrieval 
error increases with VWC. The soil moisture signal is 
attenuated by the vegetation layer, which makes the retrieval 
more sensitive to Kp noise and roughness uncertainty. The 
retrieval error also shows a signal-dependent characteristic 
with larger error occurring at higher moisture, consistent with 
the nonlinear dependence of backscatter on soil moisture. 

In the second part of the study, retrievals were simulated using 
the CONUS land surface dataset described earlier. 1500 
samples within one SMAP orbit covering Arizona to 
Michigan were randomly selected and retrievals were 
performed using the SPM/DSM. Compared with the Monte-
Carlo simulation this experiment employs more realistic 
inputs of soil moisture, VWC, and surface roughness and their 
geophysical correlations. With Kp noise of 0.9 dB, and 5% 
error in roughness knowledge, 0.06 cm3/cm3 soil moisture 
retrieval accuracy is achievable for VWC up to 1.2 kg/m2 
(Figure 3). Speckle is a major contributor to the Kp noise, 
therefore Kp can be reduced significantly by increasing the 
number of looks. The 0.9 dB specification is an upper limit 
representing the maximum anticipated instrument error at 3-
km resolution, computed using only the fore-look portion of 
the 360° antenna scan. By adding the aft look (doubling the 
number of samples), the Kp noise is reduced to 0.7 dB. In this 
case, the VWC range that allows the 0.06 cm3/cm3 retrieval 
accuracy increases to 1.7 kg/m3. At the outer edge of the 
swath, with fore- and aft- looks, the Kp noise is 0.6 dB. In this 
scenario, the VWC up to 2.2 kg/m2 is permissible for adequate 
retrieval.  

The above analysis has the following caveats. The soil surface 
roughness is assumed known to within 5% error. The accuracy 
of the roughness knowledge affects the retrieval performance 
in low-vegetation cases where the surface scattering 
dominates over the scattering and attenuation by the 
vegetation. When the retrieval is simulated with 10% 
roughness error, the retrieval errors in Figure 3 increase by 
0.01 cm3/cm3 for the bare surface and by 0.005 cm3/cm3 for 2 
kg/m2 VWC, compared with those of the 5% case. 
Uncertainties in the radar model have not been accounted for. 
One approach to assess the model error is to use different 
radar models in the forward and inverse processing. 

The retrieval analysis presented above is based on a single 
time ‘snapshot’ retrieval approach. This approach is limited by 
vegetation as the soil moisture signal is attenuated and 
scattered by a significant vegetation canopy. An alternative is 
to estimate relative change in soil moisture, as opposed to 
absolute soil moisture, through temporal analysis of 
backscatter time series, assuming that vegetation effects do not 
vary significantly during the time interval of interest [11]. A 
study of such time-series approaches is under way. 
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Figure 3. Soil moisture retrieval error simulated using 
SPM/DSM over one SMAP pass within the continental U. S. 
Different Kp noise levels and 5% error in knowledge of the 
surface roughness were introduced during the retrievals. The 
unevenness of the retrieval curve (e.g., at 1 kg/m3) is mostly 
due to the unevenness in the geographic representation of the 
input parameter fields. 

 
III. FREEZE/THAW CLASSIFICATION 

The SMAP mission baseline requirements call for SMAP to 
provide measurements of surface freeze/thaw state for areas 
north of 45 degrees north latitude with a classification 
accuracy of 80% at 3 km spatial resolution and 2-day average 
repeat intervals. SMAP will meet these requirements, 
providing daily composite maps of land surface freeze/thaw 
state based on high resolution (1-3 km) radar backscatter time 
series.  Freeze/thaw state will be provide as a binary state (i.e. 
frozen or thawed) as a global product with the baseline 
freeze/thaw requirements satisfied for latitudes north of 45 
degrees North. 

A. Freeze/Thaw retrieval algorithm 
The retrieval of landscape freeze/thaw state relies on analysis 
of time series radar backscatter for identification of temporal 
changes in backscatter associated with differences in the 
aggregate landscape dielectric constant that occur as the 
landscape transitions between predominantly frozen and non-
frozen conditions. This technique assumes that the large 
changes in dielectric constant occurring between frozen and 
non-frozen conditions dominate the corresponding backscatter 
temporal dynamics. This is generally valid during periods of 
seasonal freeze/thaw transitions for most areas of the 
cryosphere.  
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The SMAP baseline freeze/thaw state classification algorithm 
compares the time sequence of radar backscatter relative to 
backscatter acquired during a seasonal reference state or states 
[12]. This seasonal threshold algorithm may be expressed 
through definition of a seasonal scale factor: 

,     (3) 

where σ(t) is the backscater measured at time t, and σ fr and    
σ th   are backscatter values corresponding to landscape frozen 
and thawed reference staes, respectively. A threshold value T 
is defined such that Δ(t) > T and Δ(t) ≤ T define the thawed 
and frozen landcscpae state, respectively. The selection of T 
may be optimized for various land cover conditions and sensor 
configurations.  

 

 
Figure 4. An example of time series landscape freeze/thaw 
state classification derived using a temporal sequence of L-
band SAR images acquired by JERS-1 in 1998 for a region of 
the Tanana River Floodplain near Fairbanks, Alaska. Derived 
at 100m resolution, these products cover the time period of 
the dominant seasonal thaw transition (between 1 April and 
15 May) and the initial stages of seasonal freeze (24 
September). 
 

An example of freeze/thaw state derived from multi-temporal 
JERS-1 SAR images for a region of the Tanana River 
Floodplain near Fairbanks, Alaska is shown in Figure 4. In 
this example, T = 0.5. Algorithm performance has been 
validated using in situ data sets from biophysical monitoring 
stations [1, 13]. Assement of freeze-thaw algorithm 
performance using a variaety of microwave sensors has shown 
similar spatial-temporal patterns, with 72-93 % mean annual 
classification accuracy relative to NCDC stations [14]. These 
10-meter resolution products cover the dominant seasonal 
springtime thaw transition and the initial stage of autumn 
freeze. SMAP will support generation of similar products at 1-
3 km spatial resolution with significantly improved temporal 
fidelity (2 days). 

 

B. Retrieval product demonstration 
Figure 5 shows an illustration of the SMAP freeze/thaw 
product generated using a land surface hydrologic modeling 
framework. This example was derived through application of 
the Pan-Arctic Water Balance Model (PWBM [15]) forced 
with time-varying climate data (air temperature and 
precipitation) derived from the NCEP/NCAR reanalysis 
project. The PWBM simulations are daily and are provided on 
a Northern Hemisphere Equal-Area Scalable Grid (EASE-
Grid). Results shown are for modelled soil temperature 
corresponding to the layer from 0 to 5 cm. 

 
IV. SUMMARY 

Approaches and simulation results for retrieving surface soil 
moisture and freeze/thaw state from SMAP measurements 
have been discussed in this paper. Soil moisture retrievals 
were examined using the small perturbation and discrete 
scattering models (SPM/DSM) for radar scattering at L-band, 
and land surface model simulation fields. Enhanced radar 
scattering models and time-series approaches will be 
implemented and reported in the near future. A demonstration 
of the freeze-thaw state product has been developed using an 
integrated land surface hydrologic modeling scheme. The 
freeze/thaw product for SMAP will be derived using a time 
series analysis of the high resolution radar backscatter. 

 
Figure 5. A demonstration of the construct of the SMAP daily 
Level 3 Freeze/Thaw product derived using a land surface 
hydrology model driven by NCEP/NCAR reanalysis data to 
simulate freeze/thaw state in the terrestrial pan-Arctic basin, 
and assuming thawed conditions outside that basin. Blue and 
red denote frozen and thawed regions, respectively. 
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